

Joint Survey Processing and High-Redshift* Galaxies

(Caltech/IPAC) afaisst@ipac.caltech.edu

+ the IPAC JSP team (Ben, George, Nathaniel, Ranga, Roberta, Sergio...)

JSP Splinter / Jan 11, 2022

Andreas Faisst

Artist's impression of a quasar

Motivation

Our goal is to study large samples of galaxies in the Epoch of Reionization (z > 6) to:

- physical properties and clustering environments
- understand better the processes that ionized the early Universe understand the formation and growth of early galaxies via their

Multi-wavelength data over wide area are crucial:

- Selection of high-z galaxies requires data in the blue (and red)
- Characterization of physical properties requires data in the red

Requirements for JSP

To achieve high-redshift science, we need highly consistent pixel photometry across multiple wavelengths (data sets) at the survey limits.

Individual Data Products

Co-adds and single exposures

Accurate magnitude- and positiondependent PSF across data set

Precise photometric calibration

Across Data Products

Standardization of photometry, calibrations/corrections, flagging, masking

Astrometric alignment

Consistent photometric extraction at pixel level at survey limits (including limits!)

Quality checks (photometry, PSF, etc)

Example Application: Finding Quasars in the EoR

- Quasars are powered by massive black holes and ionize the surrounding hydrogen
- They are tracers of black hole growth and reionization.

Bright Quasar

> ionized bubbles

ionized

Example Application: Finding Quasars in the EoR

Faint Quasars are hard to catch:

- They are <u>faint and missed</u> in shallow wide-field surveys
- Point sources with similar brightness and color as <u>cool dwarf stars</u> (types M, L, T, ...)

No consensus on the number of faint quasars at z > 6!

(combining SDSS, CFHQS, SHELLSQ)

Example Application: Finding Quasars in the EoR Two datasets similar to future *Rubin* and *Euclid/Roman* surveys: Subaru HyperSupreme-Cam *i*-band Hubble ACS/F814W

30"

Finding Quasars with Joint Survey Processing

* $M_{UV} > -22 \text{ AB}$

Quasars can be selected by

- <u>Red color</u> across the Lyman
 Break (+ IGM absorption)
- <u>Compactness</u> (point source) in <u>space-based</u> imaging

Search for <u>z > 6 low-luminosity*</u> <u>Ouasars</u> in the <u>COSMOS field</u> by combining <u>Subaru/HSC i-band</u> <u>and HST F814W</u> observations

COSMOS: Scoville et al. (2007), Koekemoer et al. (2007) HSC: Aihara et al. (2008)

7

Pixel-Level Joint Photometry

Need accurate photometry of space- and ground-based datasets

Challenges:

- Different <u>seeing/PSF</u>, <u>pixel scale</u>, <u>sensitivity</u>, and <u>astrometric alignment</u> <u>Confusion/blending</u>! (>30% of sources at > 25 mag AB, ground based) • Expect mostly non-detections in HSC (blue) images for z > 6 Quasars

Solution: Prior-based forced photometry (e.g., Tractor (Lang et al. 2016)) Prior-based forced photometry fitting. Use high-resolution HST/ACS images to measure photometry on low-resolution HSC images

metr Photon oint

Faisst + JSP-team et al. (2021)

• •			10 ³			
Too		ınts)	10 ²		TPh	ot out-p (parame
try	ach	l (cou	101			
D O	O O O	r pixe	10 ⁰			
oto	0 R	ial pei	10^{-1}			
		residu	10 ⁻²			
e a		dian 1	10 ⁻³			
		Me	10 ⁻⁴	TPh Trac	ot: "scali ctor: fitting	ng" of high- g parametri
				19	20	21

[HSC-i]_{Tractor} (AB mag)

Pixel-Level Joint Photometry

Necessary preparation:

1. Astrometric alignment of HST/ ACS and HSC images using Gaia stars and compact extragalactic sources

Achieve accuracy of ~30 mas with no significant bias

et al. (2021 -team \mathcal{S} Faisst

Pixel-Level Joint Photometry

Necessary preparation:

- 1. Astrometric alignment of HST/ ACS and HSC images using Gaia stars and compact extragalactic sources
- 2. Measure position-dependent PSF (to convolve prior models)

A lot of spurious detections in sample (poor cosmic ray rejection because only 4 dither frames for HST/ACS observations)

Removal of Spurious Detections in Multi-Frame Data

stack

The Final Sample of Lo	W-				
What about cool dwarf stars?	20				
<u>Similar number of L and T</u>	21				
stars expected over survey	22				
area (1.64 deg ²) in direction \mathbb{R}^{2}	23				
to COSMOS field.	24				
magni	25				
DUL	26				
No detection in HST H-band					
Rule out stars (for 7 out of 12					

-Luminosity z > 6 Quasars

The Faint End of the Quasar Luminosity Function at z > 6

Assuming our candidates are low-luminosity quasars, we find a space density of

~10⁻⁶ Mpc⁻³ at $M_{UV} = -21AB$

Consistent with photometric sources, but 1-2 magnitudes higher than spectroscopic SUIVEY (Matsuoka et al. 2018)

Conclusions

• Quasar luminosity function at z > 6 keeps rising

• Still, low-luminosity Quasars only contribute ~10% to reioinzation but they can accelerate ionization of IGM

Science

- Joint analysis of space and ground-based data to obtain multiwavelength data is crucial for high-redshift science
- Pixel-level forced photometry is a basic and crucial need for analyzing future survey data with different properties such as from Roman, Rubin, and Euclid.
- Crucial steps: consistent prior-based photometric extraction, astrometric alignment, PSFs calculation

Andreas Faisst (afaisst@ipac.caltech.edu)

